APPLICATION OF SUPERVISED LEARNING
DEEP LEARNING
Question
[CLICK ON ANY CHOICE TO KNOW THE RIGHT ANSWER]
|
|
True
|
|
False
|
|
Either A or B
|
|
None of the above
|
Detailed explanation-1: -An autoencoder is a special type of neural network that is trained to copy its input to its output. For example, given an image of a handwritten digit, an autoencoder first encodes the image into a lower dimensional latent representation, then decodes the latent representation back to an image.
Detailed explanation-2: -An autoencoder is an unsupervised learning technique for neural networks that learns efficient data representations (encoding) by training the network to ignore signal “noise.” Autoencoders can be used for image denoising, image compression, and, in some cases, even generation of image data.
Detailed explanation-3: -Autoencoders are a specific type of feedforward neural networks where the input is the same as the output. They compress the input into a lower-dimensional code and then reconstruct the output from this representation.