PHYSIOLOGY
GENERAL PHYSIOLOGY
Question
[CLICK ON ANY CHOICE TO KNOW THE RIGHT ANSWER]
|
|
cross bridge; Calcium
|
|
relationship; Calcium
|
|
cross bridge; Acetylcholine
|
|
connection; Sodium
|
Detailed explanation-1: -If present, calcium ions bind to troponin, causing conformational changes in troponin that allow tropomyosin to move away from the myosin binding sites on actin. Once the tropomyosin is removed, a cross-bridge can form between actin and myosin, triggering contraction.
Detailed explanation-2: -Once the myosin-binding sites are exposed, and if sufficient ATP is present, myosin binds to actin to begin cross-bridge cycling. Then the sarcomere shortens and the muscle contracts. In the absence of calcium, this binding does not occur, so the presence of free calcium is an important regulator of muscle contraction.
Detailed explanation-3: -Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding).
Detailed explanation-4: -ATP first binds to myosin, moving it to a high-energy state. The ATP is hydrolyzed into ADP and inorganic phosphate (Pi) by the enzyme ATPase. The energy released during ATP hydrolysis changes the angle of the myosin head into a “cocked” position, ready to bind to actin if the sites are available.
Detailed explanation-5: -Troponin plays a central role in the calcium-regulation of muscle contraction: Troponin is the sole calcium-binding component of thin filaments (actin-tropomyosin-troponin complex) of striated muscles.