SOFTWARE PROJECT MANAGEMENT
QUALITY MANAGEMENT
Question
[CLICK ON ANY CHOICE TO KNOW THE RIGHT ANSWER]
|
|
Positive Distortion Errors
|
|
Type I Errors
|
|
Negative Distortion Errors
|
|
Type II Errors
|
Detailed explanation-1: -A type II error is a statistical term used within the context of hypothesis testing that describes the error that occurs when one fails to reject a null hypothesis that is actually false. A type II error produces a false negative, also known as an error of omission.
Detailed explanation-2: -Type II error is mainly caused by the statistical power of a test being low. A Type II error will occur if the statistical test is not powerful enough. The size of the sample can also lead to a Type I error because the outcome of the test will be affected.
Detailed explanation-3: -A type I error occurs when in research when we reject the null hypothesis and erroneously state that the study found significant differences when there indeed was no difference. In other words, it is equivalent to saying that the groups or variables differ when, in fact, they do not or having false positives.
Detailed explanation-4: -Type I error That’s a value that you set at the beginning of your study to assess the statistical probability of obtaining your results (p value). The significance level is usually set at 0.05 or 5%. This means that your results only have a 5% chance of occurring, or less, if the null hypothesis is actually true.